
3. ABC is a triangle with $\angle B$ greater than $\angle C$. D and E are points on BC such that AD is perpendicular to BC and AE is the bisector of angle A. Complete the relation (1980)

$$\angle DAE = \frac{1}{2}[() - \angle C]$$

Solution: -

3. We have
$$\angle BAE = \angle CAE$$
 (given)
and $\angle ADB = \angle ADC = 90^{\circ}$ (given)

Now $\angle DAE = \angle BAE - \angle BAD$ $= \angle CAE - (90^{\circ} - \angle B)$ $= (\angle CAD - \angle DAE) - 90^{\circ} + \angle B$ $= (90^{\circ} - \angle C) - \angle DAE - 90^{\circ} + \angle B$

$$\Rightarrow 2 \angle DAE = \angle B - \angle C \Rightarrow \angle DAE = \frac{1}{2} (\angle B - \angle C)$$